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Abstract

We introduce and obtain two-mode paraboson coherent states. In appropriate
subspaces these coherent states provide a decomposition of unity where
the measure, when expressed using the cat-type states, is positive definite.
Bicoherent states where the mutually commuting lowering operators are
diagonalized are also obtained. Matrix elements in the coherent state basis
are calculated.

PACS numbers: 02.20.−a, 02.20.Sv, 03.65.−w, 03.65.Fd

1. Introduction

Soon after parastatistics had been introduced [1], it was discovered that it has a deep algebraic
structure. It turned out that any n pairs of parafermion operators generate the simple Lie algebra
so(2n + 1) [2, 3], and n pairs of paraboson creation and annihilation operators b±

1 , . . . , b±
n

generate a Lie superalgebra [4], isomorphic to one of the basic classical Lie superalgebras
in the classification of Kac [5], namely to the orthosymplectic Lie superalgebra osp(1|2n)

[6]. Actually, the paraboson operators were introduced earlier by Wigner [7] in a search of
the most general commutation relations between the position operator q̂ and the momentum
operator p̂ of a one-dimensional oscillator, so that the Heisenberg equations are compatible
with Hamilton’s equations. The operators p̂, q̂ turned out to generate osp(1|2) and Wigner
was the first who found a class of (infinite-dimensional) representations of a Lie superalgebra
[8]. Later on the results of Wigner gave rise to more general quantum systems (see [9] for
references in this respect and for a general introduction to parastatistics), and in particular to
Wigner quantum systems introduced by Palev [8, 10].
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However only quite recently, the paraboson Fock spaces for the Lie superalgebra osp(1|2n)

have been constructed [11]. These are lowest weight representations V (p) characterized by
a positive parameter p, called the order of the statistics. In [11], an explicit basis for the
representation spaces V (p) is introduced with the matrix elements of these representations.
Because of the computational difficulties in the construction of the paraboson Fock spaces the
paraboson coherent states (eigenstates of paraboson operators) were constructed only for one
pair of paraboson operators [12]. For this single-mode case, the results are quite complete:
in terms of the paraboson representations [13], the coherent states and an expression for the
resolution of the identity operator were given [14]. Note that again only for this single-mode
case, an alternative approach using Macfarlane’s construction [15] of Green’s ansatz has more
recently been used [16, 17] to construct paraboson coherent states (though this time not in
irreducible representations).

In the present paper we use the results of [11] for the n = 2 case in order to obtain
‘coherent state’ representations of two pairs of paraboson operators b±

1 , b±
2 . Coherent states

play vital roles [18–21] in many contexts such as quantum optics, semiclassical quantization
of systems with spin degrees of freedom, construction of quantum mechanical path integrals,
the geometric quantization of coadjoint orbits, and so on. One specific motivation of our
study lies in the realm of noncommutative spaces. It has recently been observed [22] that
the fuzzy torus can be regarded as a single mode q-deformed parafermion. It is important to
investigate higher order generalizations and supersymmetrization of such fuzzy spaces and
their relations with n-body parastatistics. In this context the coherent states are expected to
provide the star product structure that reflects the noncommutativity of such spaces, and allows
building of quantum mechanical and field theoretical models on such spaces. Coherent state
realization [23] of such star product, and its generalizations for noncommutative superspaces
utilizing, for instance, the oscillator representation of osp(1|2) coherent states have been
achieved [24]. From these considerations the construction of the osp(1|2n) coherent states
based on n-body paraboson representations may have utility in analyzing fuzzy superspaces.
Another motivation of the present work stems from the study of integrable models in quantum
mechanics such as the Calogero model [25]. It has been observed [26], [15] that the single
mode (n = 1) paraboson plays a crucial role in understanding the Calogero model [25]. Our
construction of the coherent states of the multi-mode parabosons, therefore, may facilitate a
detailed construction of related quantum integrable models.

The plan of the present work is as follows. In section 2, we define the Lie superalgebra
osp(1|4) and give a description of its paraboson Fock representations V (p). The b−

1 -coherent
states are constructed in section 3. Since the operators b−

1 and b−
2 do not commute but b−

1

and
(
b−

2

)2
do, in section 4 we are dealing with the b−

1 and
(
b−

2

)2
-coherent states. Section 5

is devoted to the b−
2 -matrix elements. The constructed coherent states allow the resolution of

unity which is considered in section 6. We end the paper with some final remarks.

2. The Lie superalgebra osp(1|4) and its paraboson representations

In a matrix form the orthosymplectic Lie superalgebra osp(1|4) [5] can be defined as a subset
of all five by five matrices⎛

⎜⎜⎜⎜⎝
0 a b c d

c e f x y

d g h y z

−a u v −e −g

−b v w −f −h

⎞
⎟⎟⎟⎟⎠ , (2.1)

2
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where the nonzero entries are arbitrary complex numbers. The even subalgebra osp(1|4)0̄

consists of the matrices for which a = b = c = d = 0 and the odd subspace osp(1|4)1̄ of
osp(1|4) corresponds to the case in (2.1) when e = f = g = h = x = y = z = u = v =
w = 0. Let the row and column indices run from 0 to 4 and denote by eij the matrix with
zeros everywhere except a 1 on position (i, j). Then the Cartan subalgebra h of osp(1|4) is
spanned by the diagonal elements

h1 = e11 − e33, h2 = e22 − e44. (2.2)

In terms of the dual basis δ1, δ2 of h∗, the odd root vectors and the corresponding roots of
osp(1|4) are given by

e0,k − ek+2,0 ↔ −δk, k = 1, 2,

e0,k+2 + ek,0 ↔ δk, k = 1, 2.

The even root vectors and roots are

ej,k − ek+2,j+2 ↔ δj − δk, j �= k = 1, 2,

ej,k+2 + ek,j+2 ↔ δj + δk, j � k = 1, 2,

ej+2,k + ek+2,j ↔ −δj − δk, j � k = 1, 2.

We introduce the following multiples of the odd root vectors:

b+
k =

√
2(e0,k+2 + ek,0), b−

k =
√

2(e0,k − ek+2,0) k = 1, 2. (2.3)

Since all even root vectors can be obtained by anticommutators
{
b

ξ

j , b
η

k

}
, the following

holds [6]

Theorem 1 (Ganchev and Palev). As a Lie superalgebra defined by generators and relations,
osp(1|4) is generated by four odd elements b±

k subject to the following relations:[{
b

ξ

j , b
η

k

}
, bε

l

] = (ε − ξ)δjlb
η

k + (ε − η)δklb
ξ

j . (2.4)

The operators b+
j are the positive odd root vectors and the b−

j are the negative odd root
vectors. Relations (2.4) are the defining triple relations of the paraboson operators.

The paraboson Fock space V (p) is characterized by (j, k = 1, 2)(
b±

j

)† = b∓
j , b−

j |0〉 = 0,
{
b−

j , b+
k

}|0〉 = pδjk|0〉. (2.5)

Furthermore, it is easy to verify that{
b−

j , b+
j

} = 2hj (j = 1, 2). (2.6)

Hence we have the following:

Corollary 2. The paraboson Fock space V (p) is the unitary irreducible representation
(unirrep) of osp(1|4) with lowest weight

(
p

2 ,
p

2

)
.

In [11], an explicit basis and the matrix elements of these representations were constructed.
We summarize the results:

Theorem 3. ([11]) The osp(1|4) representation V (p) with lowest weight
(

p

2 ,
p

2

)
is a unirrep

if and only if p � 1. For p > 1, the representation space is spanned by the following
orthonormal basis (Gelfand–Zetlin basis (GZ)):

|m) =
∣∣∣∣m12,m22

m11

)
, (2.7)

3
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where (m12,m22) is a partition λ of length at most 2, i.e. m12 and m22 are integers with

m12 � m22 � 0, and m12 � m11 � m22. (2.8)

For p = 1, the basis consists of all vectors (2.7)–(2.8) with m22 = 0. The explicit action of
the osp(1|4) generators in V (p) is given by

b+
1 |m) =

√
m11 − m22 + 1f1(m12,m22)

∣∣∣∣m12 + 1,m22

m11 + 1

)

−√
m12 − m11f2(m12,m22)

∣∣∣∣m12,m22 + 1
m11 + 1

)
, (2.9)

b+
2 |m) =

√
m12 − m11 + 1f1(m12,m22)

∣∣∣∣m12 + 1,m22

m11

)

+
√

m11 − m22f2(m12,m22)

∣∣∣∣m12,m22 + 1
m11

)
, (2.10)

b−
1 |m) = √

m11 − m22f1(m12 − 1,m22)

∣∣∣∣m12 − 1,m22

m11 − 1

)

−
√

m12 − m11 + 1f2(m12,m22 − 1)

∣∣∣∣m12,m22 − 1
m11 − 1

)
, (2.11)

b−
2 |m) = √

m12 − m11f1(m12 − 1,m22)

∣∣∣∣m12 − 1,m22

m11

)

+
√

m11 − m22 + 1f2(m12,m22 − 1)

∣∣∣∣m12,m22 − 1
m11

)
, (2.12)

h1|m) =
(

p

2
+ m11

)
|m), h2|m) =

(
p

2
+ m12 + m22 − m11

)
|m), (2.13)

where

f1(m12,m22) = (−1)m22
(m12 + 2 + Em12(p − 2))1/2

(m12 − m22 + 1 + Om12−m22)
1/2

, (2.14)

f2(m12,m22) = (m22 + 1 + Em22(p − 2))1/2

(m12 − m22 + 1 − Om12−m22)
1/2

(2.15)

and the even and odd functions Ej and Oj are defined by

Ej = 1 if j is even and 0 otherwise, Oj = 1 if j is odd and 0 otherwise. (2.16)

In the following sections, we shall assume that we are dealing with the generic case p > 1.

3. b−
1 -coherent states

In this section we will construct coherent states of the operator b−
1 as eigenstates in V (p)

b−
1 ψ = αψ, (3.1)

where α is a complex eigenvalue. Let |ζ 〉 ∈ V (p) be a weight vector annihilated by b−
1 , i.e.

h1|ζ 〉 = ζ1|ζ 〉, h2|ζ 〉 = ζ2|ζ 〉, b−
1 |ζ 〉 = 0. (3.2)

4
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Lemma 4. Let |ζ 〉 ∈ V (p) be a weight vector annihilated by b−
1 and let T1 = b−

1 b+
1 ∈

U(osp(1|4)). Then

• b−
1

(
b+

1

)n|ζ 〉 = (n + On(2ζ1 − 1))
(
b+

1

)n−1|ζ 〉 (3.3)

• T1
(
b+

1

)n|ζ 〉 = (n + 1 + En(2ζ1 − 1))
(
b+

1

)n|ζ 〉. (3.4)

For vectors v in V (p) which are T1-eigenvectors with nonzero eigenvalue, i.e. T1v = λv, we
define T −1

1 v = λ−1v. Then

• T −1
1

(
b+

1

)n|ζ 〉 = (n + 1 + En(2ζ1 − 1))−1(b+
1

)n|ζ 〉 (3.5)

• (
b+

1T −1
1

)n|ζ 〉 =
n∏

k=1

(k + Ok(2ζ1 − 1))−1(b+
1

)n|ζ 〉. (3.6)

Proof. Equation (3.3) holds for n = 1:

b−
1 b+

1 |ζ 〉 = {
b−

1 , b+
1

}|ζ 〉 = 2h1|ζ 〉 = 2ζ1|ζ 〉
and for n = 2:

b−
1

(
b+

1

)2|ζ 〉 = [
b−

1 ,
(
b+

1

)2]|ζ 〉 = 2b+
1 |ζ 〉.

In the last expression we used the triple relation
[
b−

1 ,
(
b+

1

)2] = 2b+
1 (see (2.4)). Now the result

follows using induction on n:

b−
1

(
b+

1

)n|ζ 〉 = [
b−

1 ,
(
b+

1

)2(
b+

1

)n−2]|ζ 〉
= [

b−
1 ,
(
b+

1

)2](
b+

1

)n−2|ζ 〉 +
(
b+

1

)2[
b−

1 ,
(
b+

1

)n−2]|ζ 〉
= (

2
(
b+

1

)n−1
+
(
b+

1

)2
(n − 2 + On(2ζ1 − 1))

(
b+

1

)n−3)|ζ 〉
= (

n + On(2ζ1 − 1)
(
b+

1

)n−1)|ζ 〉.
Formula (3.4) follows directly from (3.3). Because of the diagonal action of T1 on weight
vectors

(
b+

1

)n|ζ 〉 of V (p) and the fact that n + 1 + On(2ζ1 − 1) > 0 one concludes that (3.5)
holds. Note that T −1

1 is not an element of the enveloping algebra; nevertheless its action on
such vectors of V (p) is well defined. The proof of (3.6) uses (3.5) and again induction. �

The last result allows us to define a ‘vertex operator’ χ(α):

χ(α) =
∞∑

n=0

αn
(
b+

1T −1
1

)n = 1

1 − αb+
1T −1

1

(3.7)

on vectors |ζ 〉 of the form (3.2). Then we have

Lemma 5. Let |ζ 〉 ∈ V (p) be a weight vector annihilated by b−
1 that is normalized (i.e.

〈ζ |ζ 〉 = 1) and χ(α) a vertex operator of the form (3.7). Then

• χ(α)|ζ 〉 ∈ V (p)

• The norm of χ(α)|ζ 〉 is given by

〈χ(α)|ζ 〉|χ(α)|ζ 〉〉 = 0F1

(
−
ζ1

;
(

ᾱα

2

)2
)

+
ᾱα

2ζ1
0F1

(
−

ζ1 + 1
;
(

ᾱα

2

)2
)

, (3.8)

where 0F1
(−

a
; x
)

is the classical hypergeometric series

0F1

(−
a

; x

)
=

∞∑
k=0

xk

(a)kk!
, (a)k = a(a + 1) · · · (a + k − 1) (3.9)

5
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• χ(α)|ζ 〉 is an eigenvector of b−
1 with eigenvalue α:

b−
1 χ(α)|ζ 〉 = αχ(α)|ζ 〉. (3.10)

Proof. The first assertion follows from (3.8), since it is sufficient to show that the norm of the
vector is finite. Since vectors of different weights are orthogonal, one has

〈χ(α)|ζ 〉|χ(α)|ζ 〉〉 =
∞∑

n=0

ᾱnαn
〈(
b+

1T −1
1

)n|ζ 〉|(b+
1T −1

1

)n|ζ 〉〉.
Consider〈(
b+

1T −1
1

)n+1|ζ 〉∣∣(b+
1T −1

1

)n+1|ζ 〉〉
= 〈

b+
1T −1

1

(
b+

1T −1
1

)n|ζ 〉∣∣b+
1T −1

1

(
b+

1T −1
1

)n|ζ 〉〉
= 〈

T −1
1

(
b+

1T −1
1

)n|ζ 〉∣∣b−
1 b+

1T −1
1

(
b+

1T −1
1

)n|ζ 〉〉
= 〈

T −1
1

(
b+

1T −1
1

)n|ζ 〉∣∣(b+
1T −1

1

)n|ζ 〉〉
= (n + 1 + En(2ζ1 − 1))−1〈(b+

1T −1
1

)n|ζ 〉∣∣(b+
1T −1

1

)n|ζ 〉〉.
In the last expression we used (3.3) and (3.5). Now by induction it follows that

〈(
b+

1T −1
1

)n|ζ 〉∣∣(b+
1T −1

1

)n|ζ 〉〉 = n∏
k=1

(k + Ok(2ζ1 − 1))−1. (3.11)

Therefore

〈χ(α)|ζ 〉|χ(α)|ζ 〉〉 =
∞∑

n=0

ᾱnαn

n∏
k=1

(k + Ok(2ζ1 − 1))−1

= 1 +

(
ᾱα
2

)2

(ζ1)1!
+

(
ᾱα
2

)4

(ζ1)(ζ1 + 1)2!
+ · · ·

+
ᾱα

2ζ1

(
1 +

(
ᾱα
2

)2

(ζ1 + 1)1!
+

(
ᾱα
2

)4

(ζ1 + 1)(ζ1 + 2)2!
+ · · ·

)

= 0F1

(
−
ζ1

;
(

ᾱα

2

)2
)

+
ᾱα

2ζ1
0F1

(
−

ζ1 + 1
;
(

ᾱα

2

)2
)

.

Since the classical hypergeometric series (3.9) is convergent for any x one concludes
χ(α)|ζ 〉 ∈ V (p).

The last part follows from the following computation:

b−
1 χ(α)|ζ 〉 = b−

1

(
1 + αb+

1T −1
1 + α2(b+

1T −1
1

)(
b+

1T −1
1

)
+ · · · )|ζ 〉

= (
b−

1 + αT1T
−1

1 + α2(T1T
−1

1

)(
b+

1T −1
1

)
+ · · · )|ζ 〉

= b−
1 |ζ 〉 + α

(
1 + α

(
b+

1T −1
1

)
+ α2(b+

1T −1
1

)2
+ · · · )|ζ 〉 = αχ(α)|ζ 〉. �

The above considerations show that in order to construct b−
1 -coherent states we must find

a complete basis of the subspace of weight vectors of V (p), annihilated by b−
1 . The weight of

the vector |m) is given by
(

p

2 ,
p

2

)
+ (m11,m12 + m22 − m11) (see (2.13)). Now if we consider

the weights, one could construct vectors

|ζjk〉 =
j∑

i=0

ci(j, k)

∣∣∣∣k + i, j − i

j

)
, k = 0, 1, · · · , j = 0, 1, · · · , k, (3.12)

6
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of weight
(

p

2 ,
p

2

)
+ (j, k) with b−

1 |ζjk〉 = 0 and 〈ζjk|ζjk〉 = 1 (in other words
∑j

i=0 ci(j, k)2 =
1). This construction is given by

Proposition 6. An orthonormal basis of the subspace of weight vectors of V (p), annihilated
by b−

1 is given by (3.12), where

ci(j, k) =
√(

k − j + i

i

) k−j∏
r=0

√
r + 1 + Or (p − 2 + 2j)

k + 1 − r + Ok−r (p − 2)

×
i∏

s=1

(−1)j−s

√
(j + 1 − s + Ej−s(p − 2))(k − j + 2s + Ok+j−1)

(k + 1 + s + Ek+s−1(p − 2))(k − j + 2s − Ok+j−1)
. (3.13)

Proof. The action of b−
1 on the GZ basis vectors gives

b−
1 |ζjk〉 =

j−1∑
i=0

(ci+1(j, k)
√

i + 1f1(k + i, j − i − 1)

− ci(j, k)
√

k + i − j + 1f2(k + i, j − i − 1))

∣∣∣∣k + i, j − i − 1
j − 1

)
.

Therefore

ci+1(j, k) = (−1)j−i−1

×
√

(k + i − j + 1)(j − i + Ej−i−1(p − 2))(k − j + 2i + 2 + Ok+j−1)

(i + 1)(k + i + 2 + Ek+i (p − 2))(k − j + 2i + 2 − Ok+j−1)
ci(j, k).

Clearly, the coefficients ci(j, k) (see (3.13)) satisfy the last equation. The condition∑j

i=0 ci(j, k)2 = 1 is equivalent to the following identity:

j∑
i=0

(
k − j + i

i

) i∏
r=1

(j + 1 − r + Ej−r (p − 2))(k − j + 2r + Ok+j−1)

(k + 1 + r + Ek+r−1(p − 2))(k − j + 2r − Ok+j−1)

=
k−j∏
r=0

(k + 1 − r + Ok−r (p − 2))

(r + 1 + Or (p − 2 + 2j))
. (3.14)

We only sketch the proof of this identity. One has to consider four cases with j and k even or
odd. In each of these cases the proof follows the following steps:

(1) Consider the sum over i even and over i odd separately.
(2) Rewrite the sums in hypergeometric form and use a summation theorem.
(3) Combine and see that this is the right-hand side of (3.14).

To show that vectors of the form (3.12) form a basis of the space annihilated by b−
1 , one

uses a weight argument and the explicit action of b−
1 , given by (2.11). Note that in V (p), the

multiplicity of the weight
(

p

2 ,
p

2

)
+ (j, k) is given by min(j + 1, k + 1). For k = 0, it follows

from (2.11) that there is only one vector annihilated by b−
1 . For k = 1, (2.11) and the above

multiplicity allow the construction of only two vectors annihilated by b−
1 . More generally,

the multiplicity argument and (2.11) yield at most k + 1 vectors annihilated by b−
1 for a given

k-value. Since all vectors (3.12) are linearly independent, the statement follows. �

Combination of proposition 6 and the previous lemma now yields the following result:

7
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Proposition 7. A complete (actually, an overcomplete) set of b−
1 -coherent states b−

1 ψ̃jk(α) =
αψ̃jk(α) is defined by

ψ̃jk(α) = χ(α)|ζjk〉, k = 0, 1, · · · ; j = 0, 1, · · · , k, (3.15)

where χ(α) and |ζjk〉 are given by (3.7) and (3.12)–(3.13) resp. and

〈ψ̃jk(α)|ψ̃jk(α)〉 = 0F1

(
−

p

2 + j
;
(

ᾱα

2

)2
)

+
ᾱα

p + 2j
0F1

(
−

p

2 + j + 1
;
(

ᾱα

2

)2
)

(3.16)

Proof. The only part left to be proved is (3.16). It follows directly from the fact that T1|ζjk〉 =
2h1|ζjk〉 = (p + 2j)|ζjk〉 and (3.8). �

In a later section, it will be convenient to have this norm (3.16) expressed in a different
way using the modified Bessel function

Iν(x) =
∞∑

n=0

(x/2)ν+2n

n!�(ν + n + 1)
. (3.17)

Comparing with (3.9) implies that (3.16) can be rewritten as

Np,j,α = 〈ψ̃jk(α)|ψ̃jk(α)〉 =
(

ᾱα

2

)1−j−p/2

�

(
p

2
+ j

)
(Ij−1+p/2(ᾱα) + Ij+p/2(ᾱα)).

(3.18)

4. b−
1 - and

(
b−

2

)2
-coherent states

Using the defining triple paraboson relations (2.4) it is straightforward to see that the operators(
b±

2

)2
commute with b−

1 and b+
1 . Hence, the action of

(
b±

2

)2
also commutes with T1 and T −1

1 .

Therefore one concludes that
(
b±

2

)2
commutes with χ(α):(

b±
2

)2
ψ̃jk(α) = χ(α)

(
b±

2

)2|ζjk〉. (4.1)

First note that
(
b−

2

)2|ζjk〉 is a vector of weight
(

p

2 ,
p

2

)
+ (j, k − 2) and second b−

1

(
b−

2

)2|ζjk〉 =(
b−

2

)2
b−

1 |ζjk〉 = 0. Since there is only one vector of weight
(

p

2 + j,
p

2 + k − 2
)

annihilated

by b−
1 one concludes that

(
b−

2

)2|ζjk〉 = c|ζj,k−2〉. We could find the constant c by computing(
b−

2

)2|ζjk〉 on one of the GZ basis vectors of |ζjk〉 and compare the result with the same GZ
vector in |ζj,k−2〉. The result follows(

b−
2

)2|ζjk〉 = √
(k − 1 − j + Ek−j )(p + k − 2 + j + Ok+j )|ζj,k−2〉. (4.2)

In a similar way one obtains(
b+

2

)2|ζjk〉 = √
(k + 1 − j + Ek−j )(p + k + j + Ok+j )|ζj,k+2〉. (4.3)

Therefore(
b−

2

)2
ψ̃jk(α) = √

(k − 1 − j + Ek−j )(p + k − 2 + j + Ok+j )ψ̃j,k−2(α) (4.4)(
b+

2

)2
ψ̃jk(α) = √

(k + 1 − j + Ek−j )(p + k + j + Ok+j )ψ̃j,k+2(α). (4.5)

Now it is not difficult to construct the bicoherent states which are common eigenstates of the
mutually commuting b−

1 and
(
b−

2

)2
operators:

b−
1 jl(α, β) = αjl(α, β),

(
b−

2

)2
jl(α, β) = βjl(α, β), (4.6)

8
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where

jl(α, β) =
∞∑

k=0

βk+� l
2 �

√
(2k)!!(p + 2l)(p + 2l + 2) · · · (p + 2l + 2(k − 1))

ψ̃j,2k+l (α),

j = 0, 1, . . . ; l = j, j + 1.

(4.7)

The index j l in jl refers to the weight of the lowest weight vector in the expansion of jl in
the GZ basis (just as this was the case for ψ̃jk). We will make a brief comment about certain
potential utilities of the bicoherent states (4.7) in the conclusion.

5. b−
2 -matrix elements

In the previous section, (4.4) yields the matrix elements of
(
b−

2

)2
for the set of b−

1 -coherent
states ψ̃jk(α). The matrix elements of b−

2 for this set can also be computed. Let us consider
the operator χ(α) acting on a weight vector |ζ 〉 annihilated by b−

1 and apply formula (3.6).
Then one could formally write

χ(α)|ζ 〉 =
∞∑

n=0

αn
(
b+

1T −1
1

)n|ζ 〉

=
∞∑

n=0

α2n
(
b+

1T −1
1

)2n|ζ 〉 +
∞∑

n=0

α2n+1(b+
1T −1

1

)2n+1|ζ 〉

=
∞∑

n=0

1

n!(ζ1)n

(
αb+

1

2

)2n

|ζ 〉 +
αb+

1

2ζ1

∞∑
n=0

1

n!(ζ1 + 1)n

(
αb+

1

2

)2n

|ζ 〉

= 0F1

(
−
ζ1

;
(

αb+
1

2

)2
)

|ζ 〉 +
αb+

1

2ζ1
0F1

(
−

ζ1 + 1
;
(

αb+
1

2

)2
)

|ζ 〉. (5.1)

Now we compute b−
2 -matrix elements for the coherent states. Note that, by a weight argument,

〈ψ̃j ′,k′(α′)|b−
2 |ψ̃jk(α)〉 can be nonzero only if k′ = k − 1. First, use (5.1) and the fact that b−

2

commutes with
(
b+

1

)2
:

〈ψ̃j ′,k−1(α
′)|b−

2 |ψ̃jk(α)〉 = 〈ψ̃j ′,k−1(α
′)|b−

2

(
0F1

(
−

p

2 + j
;
(

αb+
1

2

)2
)

+
αb+

1

p + 2j
0F1

(
−

p

2 + j + 1
;
(

αb+
1

2

)2
))

|ζjk〉

= 〈ψ̃j ′,k−1(α
′)|0F1

(
−

p

2 + j
;
(

αb+
1

2

)2
)

b−
2 |ζjk〉

+ 〈ψj ′,k−1(α
′)|0F1

(
−

p

2 + j + 1
;
(

αb+
1

2

)2
)

αb−
2 b+

1

p + 2j
|ζjk〉.

Now, use the action of b+
1 to the left and the action b−

1 ψ̃j,k−1(α
′) = α′ψ̃j,k−1(α

′). This yields

〈ψ̃j ′,k−1(α
′)|b−

2 |ψ̃jk(α)〉 = 0F1

(
−

p

2 + j
;
(

αᾱ′

2

)2
)

〈ψ̃j ′,k−1(α
′)|b−

2 |ζjk〉

+ 0F1

(
−

p

2 + j + 1
;
(

αᾱ′

2

)2
)

α

p + 2j
〈ψ̃j ′,k−1(α

′)|b−
2 b+

1 |ζjk〉.

9
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So the computation is reduced to computing the above two matrix elements. Using the explicit
form of |ζjk〉, the action of b+

1 and b−
2 on GZ-basis elements, and the expansion of ψ̃j ′,k−1(α

′)
in terms of GZ-basis elements one finds

〈ψ̃j ′,k−1(α
′)|b−

2 |ζjk〉 =

⎧⎪⎪⎨
⎪⎪⎩

p−2
p−2+2j

√
k − j + Ok−j (p − 1 + 2j) if j ′ = j

2(−1)j−1ᾱ′
√

j (p−2+j)(p+k+j−1−Ek−j )

(p+2j−2)3/2 if j ′ = j − 1

0 otherwise

〈ψ̃j ′,k−1(α
′)|b−

2 b+
1 |ζjk〉 =

⎧⎪⎪⎨
⎪⎪⎩

−ᾱ′ p−2
p+2j

√
k − j + Ok−j (p − 1 + 2j) if j ′ = j

2(−1)j
√

(j+1)(p−1+j)(k−j−Ok−j )

(p+2j)
if j ′ = j + 1

0 otherwise

Hence 〈ψ̃j ′,k−1(α
′)|b−

2 |ψ̃jk(α)〉 is 0 for j ′ �= j − 1, j, j + 1. In the other cases it is given by

〈ψ̃j−1,k−1(α
′)|b−

2 |ψ̃jk(α)〉

= 0F1

(
−

p

2 + j
;
(

αᾱ′

2

)2
)

2(−1)j−1ᾱ′
√

j (p − 2 + j)(p + k + j − 1 − Ek−j )

(p + 2j − 2)3/2
,

〈ψ̃j,k−1(α
′)|b−

2 |ψ̃jk(α)〉

= 0F1

(
−

p

2 + j
;
(

αᾱ′

2

)2
)

p − 2

p − 2 + 2j

√
k − j + Ok−j (p − 1 + 2j)

− 0F1

(
−

p

2 + j + 1
;
(

αᾱ′

2

)2
)

αᾱ′ p − 2

(p + 2j)2

√
k − j + Ok−j (p − 1 + 2j),

〈ψ̃j+1,k−1(α
′)|b−

2 |ψ̃jk(α)〉

= 0F1

(
−

p

2 + j + 1
;
(

αᾱ′

2

)2
)

2α(−1)j

√
(j + 1)(p − 1 + j)(k − j − Ok−j )

(p + 2j)3/2
.

6. Resolution of the identity via |ψjk(α)〉 states

We now discuss the resolution of the identity operator via the b−
1 -coherent states ψ̃jk(α). To

be precise, we restrict ourselves to the states obtained by repeated actions of b+
1 on the vector

|ζjk〉 (k = 0, 1, . . . ; j = 0, 1, . . . , k) that is annihilated by b−
1 :

|ζjk; n〉 = (b+
1 )n√

2n
(

n−On

2

)
!
(

p

2 + j
)

n+On
2

|ζjk〉, n = 0, 1, 2, . . . . (6.1)

The action of b±
1 operators on these orthonormal states of weights

(
p

2 + j + n,
p

2 + k
)

is given
by

b+
1 |ζjk; n〉 =

√
(p + 2j)En + n + On|ζjk; n + 1〉,

b−
1 |ζjk; n + 1〉 =

√
(p + 2j)En + n + On|ζjk; n〉.

In the following we consider the subspace V〈j〉,k spanned by all vectors |ζjk; n〉 with
n = 0, 1, 2, . . . . For our discussion of the resolution of unity the state vectors |ζjk; n〉 and the
subspace V〈j〉,k play a vital role.

10
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Let us now consider the normalized b−
1 -coherent states determined by (3.16) and (3.18):

|ψjk(α)〉 = N−1/2
p,j,α ψ̃jk(α) = N−1/2

p,j,αχ(α)|ζjk〉. (6.2)

Employing (5.1) and (6.1) the normalized coherent states |ψjk(α)〉 may be expanded in
the discrete basis |ζjk; n〉 of the subspace V〈j〉,k as

|ψjk(α)〉 = N−1/2
p,j,α

[
0F1

(
−

p

2 + j
;
(

αb+
1

2

)2
)

+
αb+

1

p + 2j
0F1

(
−

p

2 + j + 1
;
(

αb+
1

2

)2
)]

|ζjk〉

=
((

ᾱα

2

)1− p

2 −j (
I p

2 +j−1(ᾱα) + I p

2 +j (ᾱα)
))−1/2

×
∞∑

n=0

⎛
⎝ α2n√

n!22n�
(

p

2 + j + n
) |ζjk; 2n〉 +

α2n+1√
n!22n+1�

(
p

2 + j + n + 1
) |ζjk; 2n + 1〉

⎞
⎠ .

(6.3)

Being an overcomplete set the distinct normalized coherent states are not orthogonal,

〈ψjk(α
′)|ψjk(α)〉

=
(

ᾱ′α
2

)1− p

2 −j (
I p

2 +j−1(ᾱ
′α) + I p

2 +j (ᾱ
′α)
)

[( |α′|2|α|2
4

)1− p

2 −j (
I p

2 +j−1(|α′|2) + I p

2 +j (|α′|2))(I p

2 +j−1(|α|2) + I p

2 +j (|α|2))]1/2
.

(6.4)

The reflection property of the modified Bessel function Iν(−x) = (−1)νIν(x) requires the
following inner product to be real,

〈ψjk(−α)|ψjk(α)〉 = 〈ψjk(α)|ψjk(−α)〉 = I p

2 +j−1(|α|2) − I p

2 +j (|α|2)
I p

2 +j−1(|α|2) + I p

2 +j (|α|2) . (6.5)

We note that the reality of the overlap function (6.5) allows us to construct a cat-type two-
dimensional subspace with orthogonal bases:

|ψjk(α)〉± = |ψjk(α)〉 ± ψjk(−α)〉
||ψjk(α)〉 ± |ψjk(−α)〉| , +〈ψjk(α)|ψjk(α)〉− = 0, (6.6)

where the normalized states |ψjk(α)〉± explicitly read

|ψjk(α)〉+ =
(( |α|2

2

)1−p/2−j

I p

2 +j−1(|α|2)
)−1/2 ∞∑

n=0

α2n√
n!22n�

(
p

2 + j + n
) |ζjk; 2n〉, (6.7)

|ψjk(α)〉− =
(( |α|2

2

)1− p

2 −j

I p

2 +j (|α|2)
)−1/2 ∞∑

n=0

α2n+1√
n!22n+1�

(
p

2 + j + n + 1
) |ζjk; 2n + 1〉.

(6.8)

Following [27] we now provide a resolution of the identity operator on the subspace
V〈j〉,k via the coherent states |ψjk(α)〉. To proceed, using the completeness of the discrete
orthonormal basis states on the weight space V〈j〉,k , one can write

∞∑
n=0

|ζjk; n〉〈ζjk; n| = I, (6.9)
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where I stands for the identity operator on V〈j〉,k . Using the polar decomposition of the
complex plane

α = ρ exp(iθ), d2α = ρ dρ dθ

2π

concurrently with our construction (6.3) of the coherent states |ψjk(α)〉 we integrate on the
angular variable to obtain∫ 2π

0

dθ

2π
|ψjk(α)〉〈ψjk(α)| =

(
ρ2

2

) p

2 +j−1 (
I p

2 +j−1(ρ
2) + I p

2 +j (ρ
2)
)−1

×
∞∑

n=0

(
1

n!�
(

p

2 + j + n
) (ρ2

2

)2n

|ζjk; 2n〉〈ζjk; 2n|

+
1

n!�
(

p

2 + j + n + 1
) (ρ2

2

)2n+1

|ζjk; 2n + 1〉〈ζjk; 2n + 1|
)

. (6.10)

We observe that in order to construct a resolution of unity on the current subspace it is necessary
to consider the off-diagonal elements |ψjk(α)〉〈ψjk(−α)| of the density matrix. Using as yet
to be determined functions FI (ρ), FII (ρ) over the entire complex α plane, we employ (6.10)
to obtain∫

d2α

(
ρ2

2

)1− p

2 −j (
I p

2 +j−1(ρ
2) + I p

2 +j (ρ
2)
)
FI (ρ)

1

2
(|ψjk(α)〉〈ψjk(α)|

+ |ψjk(α)〉〈ψjk(−α)|) =
∞∑

n=0

|ζjk; 2n〉〈ζjk; 2n|, (6.11)

∫
d2α

(
ρ2

2

)1− p

2 −j (
I p

2 +j−1(ρ
2) + I p

2 +j (ρ
2)
)
FII (ρ)

1

2
(|ψjk(α)〉〈ψjk(α)|

− |ψjk(α)〉〈ψjk(−α)|) =
∞∑

n=0

|ζjk; 2n + 1〉〈ζjk; 2n + 1|. (6.12)

The functions FI (ρ), FII (ρ) introduced above are required to satisfy the Stieltjes moment
relations ∫ ∞

0
dρ ρ4n+1FI (ρ) = 22n�(n + 1)�

(
p

2
+ j + n

)
, (6.13)

∫ ∞

0
dρ ρ4n+3FII (ρ) = 22n+1�(n + 1)�

(
p

2
+ j + n + 1

)
. (6.14)

These functions are now explicitly determined by constructing the inverse Mellin transform.
Using analytic continuation methods we express them as

FI (ρ) = 1

π i

∫ c+i∞

c−i∞
dz

(
ρ2

2

)−2z

�

(
z +

1

2

)
�

(
z +

p

2
+ j − 1

2

)
, (6.15)

FII (ρ) = 1

π i

∫ c+i∞

c−i∞
dz

(
ρ2

2

)−2z

�(z)�
(
z +

p

2
+ j

)
, (6.16)

where the pole structure of �(z) on the negative real axis reads

�(−n + ε) = (−1)n

n!

(
1

ε
+ ψ(n + 1) + O(ε)

)
, ψ(z) = (ln �(z))′. (6.17)
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The contour integrals listed in (6.15) and (6.16) have distinct singularity structures for
even integral values of p and for the generic case p > 1. We first construct the inverse
transforms for the even integral values: p = 2m,m = 1, 2, . . . . Substituting the Laurent
expansion (6.17) into (6.15) it is evident that the integrand in (6.15) has m + j − 1 simple
poles at z = −n − 1/2, n = 0, 1, . . . , (m + j − 2), and an infinite number of poles of order
2 at z = 1/2 − m − j − n, n = 0, 1, 2, . . . . The integral vanishes exponentially as |z| → ∞
on the left half-plane. Adjoining the contour in (6.15) with a semicircle |z| = R on the
left half-plane, and then proceeding to the limiting value of its radius, R → ∞, we get the
integral (6.15) as a sum of the contributions arising from the simple and double poles, given,
respectively, as follows:

2
m+j−2∑

n=0

(−1)n

n!

(
ρ2

2

)2n+1

(m + j − n − 2)!, (6.18)

2(−1)m+j−1
∞∑

n=0

1

n!(m + j + n − 1)!

(
ρ2

2

)p+2j+2n−1

×
(

ψ(m + j + n) + ψ(n + 1) − 2 ln

(
ρ2

2

))
. (6.19)

Combining the above contributions of the residues we obtain the promised explicit expression
of the measure,

FI (ρ) = 4

(
ρ2

2

)m+j

Km+j−1(ρ
2), (6.20)

where the modified Bessel function of the second kind Kν(z) for an integral order ν is given
by

Kν(z) = 1

2

ν−1∑
n=0

(−1)n
(ν − n − 1)!

n!

(
z

2

)2n−ν

+ (−1)ν+1
∞∑

n=0

1

n!(ν + n)!

(
ln

(
z

2

)
− 1

2
ψ(n + 1) − 1

2
ψ(ν + n + 1)

)
. (6.21)

To evaluate the contour integral (6.16) for the even integral values p = 2m,m = 1, 2, . . . we
note, as before, that the integrand has m + j simple poles at z = −n, n = 0, 1, . . . , m + j − 1,
and an infinite number of poles of order 2 at z = −m − j − n, n = 0, 1, 2, . . . , respectively.
The contribution of the residues at these poles now yields the corresponding measure function,

FII (ρ) = 4

(
ρ2

2

)m+j

Km+j (ρ
2). (6.22)

We now turn to the case of generic values of the order parameter p > 1. Contrary to
the earlier instance of even integral values of p, now the contour integral (6.15) of the inverse
Mellin transform has two infinite sequences of simple poles at z = − 1

2 − n, n = 0, 1, 2, . . . ,

and z = 1
2 − p

2 − j − n, n = 0, 1, 2, . . . . The corresponding residues to the contour integral
(6.15) read

2
∞∑

n=0

(−1)n

n!

(
ρ2

2

)2n+1

�
(p

2
+ j − n − 1

)
, (6.23)
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2
∞∑

n=0

(−1)n

n!

(
ρ2

2

)p+2j+2n−1

�
(

1 − p

2
− j − n

)
, (6.24)

respectively. Employing the reflection property of the gamma functions

�(z)�(1 − z) = π

sin πz

the residues (6.23) and (6.24) may be summed to yield the measure

FI (ρ) = 2π

sin π
(

p

2 + j
) (ρ2

2

) p

2 +j (
I p

2 +j−1(ρ
2) − I1− p

2 −j (ρ
2)
)

= 4

(
ρ2

2

) p

2 +j

Kp

2 +j−1(ρ
2). (6.25)

In the second equality in (6.25) we used the general construction of the modified Bessel
function of the second kind Kν(z) of arbitrary order ν,

Kν(z) = π

2 sin(νπ)
(I−ν(z) − Iν(z)). (6.26)

Comparing the measure function (6.25) with the case (6.20) for even integral values of p, we
observe that the form (6.25) is valid for all values of p > 1. Proceeding as before we observe
that the integrand in (6.16) has two sequences of simple poles at z = −n, n = 0, 1, 2, . . . , and
z = −p

2 − j −n, n = 0, 1, 2, . . . , respectively. Evaluating their contributions we produce the
measure function FII (ρ):

FII (ρ) = 2π

sin π
(

p

2 + j
) (ρ2

2

) p

2 +j (
I− p

2 −j (ρ
2) − I p

2 +j (ρ
2)
)

= 4

(
ρ2

2

) p

2 +j

Kp

2 +j (ρ
2). (6.27)

Comparison with (6.22) again reveals that the form (6.27) of the measure is universally true
for arbitrary p > 1.

The coherent states |ψjk(α)〉 now provide a decomposition of the identity operator in the
subspace V〈j〉,k with an explicitly known weight function. Combining (6.11) and (6.25) the
projection operator on the even subspace may be realized as∫

d2αρ2
(
I p

2 +j−1(ρ
2) + I p

2 +j (ρ
2)
)

Kp

2 +j−1(ρ
2)
(|ψjk(α)〉〈ψjk(α)| + |ψjk(α)〉〈ψjk(−α)|)

=
∞∑

n=0

|ζjk; 2n〉〈ζjk; 2n|. (6.28)

A similar construction of the projection operator on the odd subspace follows from (6.12) and
(6.27):∫

d2αρ2
(
I p

2 +j−1(ρ
2) + I p

2 +j (ρ
2)
)

Kp

2 +j (ρ
2)
(|ψjk(α)〉〈ψjk(α)| − |ψjk(α)〉〈ψjk(−α)|)

=
∞∑

n=0

|ζjk; 2n + 1〉〈ζjk; 2n + 1|. (6.29)
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The decomposition of unity on the subspace V〈j〉,k now emerges from simultaneous use of
(6.28) and (6.29),∫

d2α ρ2(I p

2 +j−1(ρ
2) + I p

2 +j (ρ
2)
)((

Kp

2 +j−1(ρ
2) + Kp

2 +j (ρ
2)
)|ψjk(α)〉〈ψjk(α)|

+
(
Kp

2 +j−1(ρ
2) − Kp

2 +j (ρ
2)
)|ψjk(α)〉〈ψjk(−α)|) =

∞∑
n=0

|ζjk; n〉〈ζjk; n| = I.

(6.30)

As remarked earlier, the decomposition given above includes off-diagonal terms of the density
operator. The nondiagonal nature of the representation disappears if we express the density
operators via the cat-type |ψjk(α)〉± states introduced in (6.6),∫

ρ dρ dθ

π
ρ2(I p

2 +j−1(ρ
2)Kp

2 +j−1(ρ
2)|ψjk(α)〉++〈ψjk(α)|

+ I p

2 +j (ρ
2)Kp

2 +j (ρ
2)|ψjk(α)〉−−〈ψjk(α)|) = I. (6.31)

Using the integral representations of the Bessel functions

Iν(z) =
(

z
2

)ν
�
(
ν + 1

2

)
�
(

1
2

) ∫ 1

−1
(1 − t2)ν− 1

2 cosh(zt) dt, ν +
1

2
> 0,

Kν(2z) =
∫ ∞

0
exp(−z exp t) exp(−z exp(−t)) cosh(νt) dt

(6.32)

we conclude that the weight function of the measure in the decomposition of the unity given
via the cat-type states in (6.31) is positive definite for the domain p > 1.

7. Conclusion

To summerize, we obtained the coherent state representations of the osp(1|4) algebra by
constructing the eigenstates of the paraboson operator b−

1 . In the subspace V〈j〉,k the coherent
state vectors |ψjk(α)〉 provide a decomposition of unity with an explicitly known weight
function. When expressed via the cat-type states |ψjk(α)〉± this measure assumes a positive
definite form for the range of the order parameter p > 1. In addition we have produced the
bicoherent states jl(α, β) which are eigenstates of the mutually commuting operators b−

1 and(
b−

2

)2
. These states live on the subspace ⊕mV〈j〉,k+2m, and their completeness on this subspace

may be investigated by using the inverse Mellin transform method followed here. We hope to
discuss this result elsewhere.

We conclude the paper with certain pointers toward further developments along the
present lines. It is known that q-deformed parafermions play a crucial role in understanding
the noncommutative space of the fuzzy torus. Similarly a q-deformed analog of the n-mode
paraboson algebra may be the underlying feature of a class of fuzzy superspaces. An extension
of the coherent states presented here is likely to provide a star product structure for such
noncommutative superspaces. Lastly, a coordinate representation of the trilinear commutation
relation of the n-mode parabosons is likely to be of significance. In view of the close affinity
of the Calogero model with the single mode paraboson, such coordinate representations are
likely to enhance our understanding of the correspondingly related n-body quantum integrable
Hamiltonian. The bicoherent states and the matrix elements of the b−

2 operator constructed in
sections 4 and 5, respectively, should help us in the description of these Hamiltonians.
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